My Code XGBRegressor code runs in jupyter notebook but it shows ValueError: DataFrame for label cannot have multiple columns

I have implemented an XGB Regressor Model in Python but it runs fine in Jupyter Notebook but is raising an error in streamlit application. I am confused as I am not able to debug the following error -
ValueError: DataFrame for label cannot have multiple columns

Code for Streamlit app-

import pandas as pd
import numpy as np
import xgboost as xgb
from xgboost import plot_importance, plot_tree
from sklearn.metrics import mean_squared_error, mean_absolute_error
from catboost import Pool, CatBoostRegressor
import lightgbm as lgb
import streamlit as st


def main():
	st.title("TINO IQ Stock Price Prediction App")
	st.sidebar.title("TINO IQ Stock Price Prediction App")
	st.markdown("Predicting the Stock Price!")
	st.sidebar.markdown("Predicting the Stock Price!")
	@st.cache(persist=True)
	def show_data():
		data = pd.read_csv('data_orginal.csv')
		data = data.drop(['Unnamed: 0'],axis=1)
		return data
	def load_data():
		df = pd.read_csv('data.csv')
		# label_encoder object knows how to understand word labels. 
		#Filling the missing values
		df = df.fillna(0)
		#Feature Engineering
		df['txn_year'] = df['txn_year']-2000
		return df

	def split(df):
		#Splitting the Data according to the Date
		split_date = '2019-08-01'
		df_train = df.loc[df['date_txn'] <= split_date]
		df_test = df.loc[df['date_txn'] > split_date]
		#Assigning X and Y values
		X_train = df_train.drop(['predicted_price','date_txn'],axis=1)
		y_train = df_train[['predicted_price']]
		X_test = df_test.drop(['predicted_price','date_txn'],axis=1)
		y_test = df_test[['predicted_price']]
		return X_train,y_train,X_test,y_test
		

	df = load_data()
	X_train,X_test,y_train,y_test = split(df)
	st.sidebar.subheader("Choose Classifier")
	classifier = st.sidebar.selectbox("Available Classifiers",("XGBOOSTRegressor(XGB)","CatBoostRegressor(CGB)","LGBMRegressor(LGBM)"))

	show = show_data()
	if st.sidebar.checkbox("Show Raw Data", False):
		st.subheader("Data_Set")
		st.write(show[:10])

	if classifier == 'XGBOOSTRegressor(XGB)':
		st.sidebar.subheader('Model Hyperparameters')
		n_estimators = st.sidebar.number_input("n_estimators (Number of Estimators)",10000,15000, step=1,key='n_estimators')
		early_stopping_rounds = st.sidebar.number_input("early_stopping_rounds(Number of Stopping Rounds)",50,100,step=10,key='early_stopping_rounds')
		if st.sidebar.button("Classify", key='classify'):
			st.subheader("XGBOOSTRegressor Results")
			model = xgb.XGBRegressor(n_estimators = n_estimators)
			model.fit(X_train, y_train,
        eval_set=[(X_train, y_train), (X_test, y_test)],
        early_stopping_rounds=early_stopping_rounds,
       verbose=False) 
			model.fit(X_train,y_train)
			preds = reg.predict(X_test)
			st.write("Mean Squared Error:",mean_squared_error(y_test, preds, squared=False))

if __name__ == '__main__':
    main()

Actual Problem-


Dataset-

Hi @Kaushik_Bhide -

Were you able to figure out this issue? If not, can you provide the sample dataset so I can work through your code?

Best,
Randy