AttributeError: ‘str’ object has no attribute ‘decode’
Traceback:
File "/app/.heroku/python/lib/python3.6/site-packages/streamlit/ScriptRunner.py", line 324, in _run_script
exec(code, module.__dict__)
File "/app/app.py", line 23, in <module>
label = teachable_machine_classification(image, 'brain_tumor_classification.h5')
File "/app/img_classification.py", line 8, in teachable_machine_classification
model = keras.models.load_model("./keras_model.h5", compile=False)
File "/app/.heroku/python/lib/python3.6/site-packages/tensorflow/python/keras/saving/save.py", line 182, in load_model
return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
File "/app/.heroku/python/lib/python3.6/site-packages/tensorflow/python/keras/saving/hdf5_format.py", line 176, in load_model_from_hdf5
model_config = json.loads(model_config.decode('utf-8'))
This is the code i am running:
import keras
from PIL import Image, ImageOps
import numpy as np
def teachable_machine_classification(img, weights_file):
# Load the model
model = keras.models.load_model("./keras_model.h5", compile=False)
# Create the array of the right shape to feed into the keras model
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
image = img
#image sizing
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
return np.argmax(prediction) # return position of the highest probability
myapp.py:
import streamlit as st
from img_classification import teachable_machine_classification
from PIL import Image
import webbrowser
url = 'https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection'
st.title("Image Classification with Google's Teachable Machine")
st.header("Brain Tumor MRI Classification Example")
st.text("Upload a brain MRI Image for image classification as tumor or no-tumor")
if st.button('Dataset From Here'):
webbrowser.open_new_tab(url)
uploaded_file = st.file_uploader("Choose a brain MRI ...", type="jpg")
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded MRI.', use_column_width=True)
st.write("")
st.write("Classifying...")
label = teachable_machine_classification(image, 'brain_tumor_classification.h5')
if label == 0:
st.write("The MRI scan has a brain tumor")
else:
st.write("The MRI scan is healthy")