Hello everyone, I’m working on a breast cancer project. However, I’m having issues with my prediction on Streamlit. Whenever I click on the predict button, it shows the same prediction no matter the adjustments I make to the sliders.
Below is what I’ve done so far. I’d like to know where I’m going wrong.
import streamlit as st
import numpy as np
import pickle
import altair as alt
from streamlit_option_menu import option_menu
X = np.load(r"C:\Users\Chris\Desktop\BreastCancerML_Folder\breast-cancer-diagnosis-ml\src\features\feature_matrix.npy")
# Loading the saved model
brCancer_model = pickle.load(open(r"C:\Users\Chris\Desktop\BreastCancerML_Folder\breast-cancer-diagnosis-ml\models\svm_model.sav", "rb"))
# Function to predict and return result
def predict_cancer(radius_mean, texture_mean, perimeter_mean,area_mean,smoothness_mean, compactness_mean, concavity_mean):
input_data = np.array([[radius_mean, texture_mean, perimeter_mean,area_mean,smoothness_mean, compactness_mean, concavity_mean]])
pred = brCancer_model.predict(input_data)[0]
pred_prob = brCancer_model.predict_proba(input_data)[0]
if pred == 1:
return "There is a {:.2f}% chance that this patient has benign cancer (Cancerous).".format(pred_prob[1] * 100)
else:
return "There is a {:.2f}% chance that this patient has malignant cancer (Non Cancerous).".format(pred_prob[0] * 100)
# Streamlit app
st.title("Breast Cancer Prediction")
# Sidebar input
st.sidebar.header("User Input")
radius_mean = st.sidebar.slider("Radius Mean", float(np.min(X[:, 0])), float(np.max(X[:, 0])), float(np.mean(X[:, 0])))
texture_mean = st.sidebar.slider("Texture Mean", float(np.min(X[:, 1])), float(np.max(X[:, 1])), float(np.mean(X[:, 1])))
perimeter_mean = st.sidebar.slider("Perimeter Mean", float(np.min(X[:, 2])), float(np.max(X[:, 2])), float(np.mean(X[:, 2])))
area_mean = st.sidebar.slider("Area Mean", float(np.min(X[:, 3])), float(np.max(X[:, 3])), float(np.mean(X[:, 3])))
smoothness_mean = st.sidebar.slider("Smoothness Mean", float(np.min(X[:, 4])), float(np.max(X[:, 4])), float(np.mean(X[:, 4])))
compactness_mean = st.sidebar.slider("Compactness Mean", float(np.min(X[:, 5])), float(np.max(X[:, 5])), float(np.mean(X[:, 5])))
concavity_mean = st.sidebar.slider("Concavity Mean", float(np.min(X[:, 6])), float(np.max(X[:, 6])), float(np.mean(X[:, 6])))
# Predict button
if st.sidebar.button("Predict"):
prediction_result = predict_cancer(radius_mean, texture_mean,perimeter_mean,area_mean,smoothness_mean,compactness_mean,concavity_mean)
st.write("Prediction Result:")
st.write(prediction_result)