The App is actually working. Its loading. When I choose my vector file, and start asking question about it, I get this following error:
TypeError: This app has encountered an error. The original error message is redacted to prevent data leaks. Full error details have been recorded in the logs (if you’re on Streamlit Cloud, click on ‘Manage app’ in the lower right of your app).
Traceback:
File “/home/appuser/venv/lib/python3.9/site-packages/streamlit/runtime/scriptrunner/script_runner.py”, line 565, in _run_script
exec(code, module.dict)
File “/app/physio_ai/app.py”, line 141, in
main()
File “/app/physio_ai/app.py”, line 122, in main
cost = handle_userinput(user_question)
File “/app/physio_ai/app.py”, line 61, in handle_userinput
response = st.session_state.conversation({“question”: user_question})
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/chains/base.py”, line 140, in call
raise e
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/chains/base.py”, line 134, in call
self._call(inputs, run_manager=run_manager)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/chains/conversational_retrieval/base.py”, line 106, in _call
docs = self._get_docs(new_question, inputs)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/chains/conversational_retrieval/base.py”, line 183, in _get_docs
docs = self.retriever.get_relevant_documents(question)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/vectorstores/base.py”, line 377, in get_relevant_documents
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/vectorstores/faiss.py”, line 254, in similarity_search
docs_and_scores = self.similarity_search_with_score(query, k)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/vectorstores/faiss.py”, line 224, in similarity_search_with_score
docs = self.similarity_search_with_score_by_vector(embedding, k)
File “/home/appuser/venv/lib/python3.9/site-packages/langchain/vectorstores/faiss.py”, line 198, in similarity_search_with_score_by_vector
scores, indices = self.index.search(vector, k)