Public-facing, enterprise-grade deployment of Streamlit

Hi everyone,

TLDR: Please let me know if you are interested in joining a webinar(s) on how to design, build, launch and maintain a production, public-facing ML MVP in Streamlit with enterprise-grade security. Prototype here (direct message me for the user name and password). Yes we signed up a $USD 400M+ turnover enterprise customer before launch. I am gauging interest in this topic :sunglasses:.

My startup is super excited to be launching our enterprise-grade machine learning MVP (using AWS and Render) after 6 months of development and I couldn’t be prouder to have done it using only Python and Streamlit :rocket:. We’ve even signed up our first paying enterprise customer before launch which is :exploding_head:

Coming from a Python-only background, my experience with Streamlit for front-end development has been a delight and stood up to our demands :smiling_face_with_three_hearts:.

Problem Motivation
I believe that as data scientists we can help our communities through building software products that users love and solve real problems. I want to motivate you to try!

But as data scientists, building enterprise-grade software can be daunting… however if I can do it, I’d like to encourage you to think you can too, if you’re willing to learn!

I am eager to contribute back to the community and keen to share our experience, lessons learned, and to learn from others.

If I can also dispel some of the persistent myths about Streamlit’s inability to handle complex, enterprise grade ML products that would be great too but by no means the main objective.

I am gauging interest from the Streamlit community in joining an interactive webinar(s) where I will be sharing our product journey in Streamlit.

Proposed topics:

  1. A brief background on what I’m passionate about, our company mission, our product journey so far, where we are heading
  2. Why doing market-user research and prototyping before product building reduces the risk of user rejection and wasted effort
  3. Levelling up your Streamlit game: production, architecture, security and user experience for data scientists
  4. Product architecture for ML apps: what it is, and why it is important
  5. Comparing the programming challenges for the front-end vs back-end
  6. Continuous Integration and Continuous Delivery: what is it and why is it useful?
  7. How to make your Python code base for Streamlit smaller and easier to: read, re-use and maintain
  8. Building in Streamlit: structuring your code, UX, achieving enterprise-grade security using OAuth 2.0 and secrets management, flow control, state management, exception handing, testing, and deployment. This could be two or more sessions depending on depth of interest.
  9. Maintaining and monitoring your app: MLOps and security perspectives
  10. Reflecting on Streamlit: why it has been PERFECT for us, our MVP use case and our startup as a business, considering other alternatives

I’m proposing that while this will be an applied session(s), I want to outline some of the design challenges involved, the tensions that arise between objectives, and some of the trade-offs you will likely weigh up as you build towards a production-grade MVP.

In true product fashion, I will likely need to iterate on the above topics and format from people. But, at this stage, I wanted to gauge potential interest before launching into it.

Timing of the first of these likely to be in early November. If there is enough interest and/or people want more depth, I’d be happy to break topics up into separate sessions.

Please like this post if you are interested and reply which topic number(s) you are most interested in. I’ll count the votes after a month or so, and structure the agenda accordingly. If there’s topics you think I’ve missed please also let me know!

  • Reducing product risk with market-user research and prototyping
  • Levelling up your Streamlit game
  • Product architecture for ML apps
  • Programming challenges for the front-end vs back-end
  • Continuous Integration and Continuous Delivery
  • Python code base for Streamlit
  • Building in Streamlit
  • Maintaining and monitoring
  • Reflecting on Streamlit
0 voters



I’m planning on doing the same and was just doing research into whether or not streamlit would work in production for our use case. This post came right on time! I would love to chat if you’re available as we are moving from our Streamlit cloud demo deployment to AWS for production. Any insights you can share would be greatly appreciated.

Hi @Rob_Sanchez please vote on which topic(s) are of interest to you above as I am trying to gauge interest in a webinar on this very issue. If I can get enough votes, I will be happy to run it. Feel free to DM if you’re looking for something else :sunglasses:

Hi and thanks to everyone for reviewing this post and for the votes so far (nine as of today)

I’m going to leave this poll open for another two weeks and count up the votes.

If we get to about 30 votes then allowing for the usual % of non-attendees that will be a good size to gauge the demand for running the webinar.

If you’re super duper keen on having it run, could I humbly and kindly ask you to get others to vote so that it makes it worthwhile :pray:

Many thanks!

Hi, I can’t seem to private message you but I’m very interested in your app. Particualry in the architecture you’ve empolyed to handle an enterprise customer. Would you be able to message me the login? Thanks

Hello @C_Quang,
Interested in testing the prototype and attending the Webinar
Doesn’t seem like we can send you DMs here to get username and password, should we go through LinkedIn then ?

Hi @metroscope sorry for the late reply I’ve been on holiday recently and only just got back. I’ll send you the instructions soon. Very keen to get your feedback.

I’ve just DM’d you